On the Perron-Frobenius eigenvector for nonnegative integral matrices whose largest eigenvalue is integral
نویسندگان
چکیده
منابع مشابه
Notes on the Perron-frobenius Theory of Nonnegative Matrices
By a nonnegative matrix we mean a matrix whose entries are nonnegative real numbers. By positive matrix we mean a matrix all of whose entries are strictly positive real numbers. These notes give the core elements of the Perron-Frobenius theory of nonnegative matrices. This splits into three parts: (1) the primitive case (due to Perron) (2) the irreducible case (due to Frobenius) (3) the general...
متن کاملOn the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملPerron–frobenius Theorem for Nonnegative Tensors
We generalize the Perron–Frobenius Theorem for nonnegative matrices to the class of nonnegative tensors.
متن کاملPERRON-FROBENIUS THEORY ON THE NUMERICAL RANGE FOR SOME CLASSES OF REAL MATRICES
We give further results for Perron-Frobenius theory on the numericalrange of real matrices and some other results generalized from nonnegative matricesto real matrices. We indicate two techniques for establishing the main theorem ofPerron and Frobenius on the numerical range. In the rst method, we use acorresponding version of Wielandt's lemma. The second technique involves graphtheory.
متن کاملThe Strong Perron Integral
In this paper, we study the strong Perron integral, and show that the strong Perron integral is equivalent to the McShane integral.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1987
ISSN: 0024-3795
DOI: 10.1016/0024-3795(87)90081-4